Planetary Defense – DE-STAR

with No Comments

Planetary Defense – DE-STAR
http://www.deepspace.ucsb.edu/projects/directed-energy-planetary-defense

Asteroids and comets that cross Earth’s orbit pose a credible risk of impact, with potentially severe disturbances to Earth and society. Numerous risk mitigation strategies have been described, most involving dedicated missions to a threatening object. We propose an orbital planetary defense system capable of heating the surface of potentially hazardous objects to the vaporization point as a feasible approach to impact risk mitigation. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of kilowatt class lasers powered by photovoltaic’s. Modular design allows for incremental development, test, and initial deployment, lowering cost, minimizing risk, and allowing for technological co-development, leading eventually to an orbiting structure that would be developed in stages with both technological and target milestones. The main objective of DE-STAR is to use the focused directed energy to raise the surface spot temperature to ~3,000K, allowing direct vaporization of all known substances. In the process of heating the surface ejecting evaporated material a large reaction force would alter the asteroid’s orbit. The baseline system is a DE-STAR 3 or 4 (1-10km array) depending on the degree of protection desired. A DE-STAR 4 allows for asteroid engagement starting beyond 1AU with a spot temperature sufficient to completely evaporate up to 500-m diameter asteroids in one year and can deflect multi km diameter asteroids if needed. Small asteroids and comets can be diverted/evaporated with a DE-STAR 2 (100m) while space debris is vaporized with a DE-STAR 1 (10m). The system is inherently modular and is assembled from a number of identical sub assemblies, allowing for mass production, each of which is small enough to fit into a launch shroud. The system is inherently multi-tasking and can simultaneous engage multiple target or missions. Additional mission tasks include powering or recharging of very distant probes, standoff power to remote facilities, standoff photon drive propulsion of small spacecraft that can achieve mildly relativistic speeds, laser powered conventional (thermal) propulsion (no oxidizer needed), laser powered ion dive, standoff composition analysis of remote objects including asteroids, active illumination detection of asteroids (LIDAR), space debris removal, SPS mode for sending excess powered to the ground or airborne systems via micro or millimeter waves as well as laser, satellite orbital boosting (LEO to GEO for example), extremely long range high speed IR communications to spacecraft and exoplanets and standoff terraforming possibilities among many others. Smaller versions of the same system design can be used for “stand-on” applications for orbital diversion by taking the laser system to the target asteroid in a dedicated mission as well as for close in composition analysis etc.

Follow Paul Garrett Hugel:

Technology Test Pilot

In 1995 At Maui High Performance Computing Center The Maui Scientific Analysis & Visualization of the Environment Program was first incubated. I was the principal investigator of this independant research project which was a joint development between MHPCC, Silicon Graphics Computers (SGI) & NKO.ORG. Using SGI Cosmo Worlds software, we pioneered the development of Internet based 3D virtual reality GIS based interactive worlds. In 1996 with a network of seven high performance SGI workstations we pioneered development of live streaming MPEG-1, MPEG-2, MPEG-4, Real Video and QuickTime Streaming Server utilizing Kassenna MediaBase software. In Maui 2002 we pioneered and tested the first wireless live streaming video using laptop computers and Maui Sky Fiber's portable 3G wireless device. In Maui we pioneered live streaming video using usb modems from AT&T , Verizon as well as live streaming from iPhone 3 over 3G wireless networks. Today The Maui S.A.V.E. Program has diversified into storm tracking including visualization and analysis of large, memory-intensive gridded data sets such as the National Hurricane Center's wind speed probabilities. I volunteer my services to numerous Disaster Services Organizations. In June 2013 I returned from Hurricane Sandy deployment as a computer operations service associate with the Disaster Services Technology Group assisting as The American Red Cross migrated from a Disaster Response Operation to Long Term Recovery Operations. Pioneering the production/editing and Internet distribution of HD video to sites like Youtube.com and Vimeo.com we are shining the light towards environmental and peace efforts of humans across the globe. Since 1992 I have held the vision of establishing Maui, Hawaii as the environmental sciences center of the world. After His Holiness the 14th Dalai Lama of Tibet came to Maui This vision has expanded to establishing Maui as the environmental & peace center of the world.

Leave a Reply