Military Researching Transcranial direct-current stimulation in VBS2 Training

with No Comments

Photo taken above is from DARWARS  The project started in 2003 and was replaced by VBS2

Video example of VBS2

VBS2 (Virtual Battlespace 2) is the successor of the battlefield simulation system VBS1. It was developed in close cooperation with the USMCAustralian Defence Force and other military customers of VBS1. VBS2 was officially launched on 17 April 2007.[1]

VBS2 offers realistic battlefield simulations and the ability to operate land, sea, and air vehicles. Instructors may create new scenarios and then engage the simulation from multiple viewpoints. The squad-management system enables participants to issue orders to squad members.

VBS2 was designed for federal, state, and local government agencies and can be specifically tailored to meet the individual needs of military, law enforcement, homeland defenseloadmaster, and first responder training environments.

VBS2 may be used to teach doctrine, tactics, techniques, and procedures during squad and platoon offensivedefensive, and patrolling operations. VBS2 delivers a synthetic environment for the practical exercise of theleadership and organizational behavior skills required to successfully execute unit missions.

VBS2 is suitable for training small teams in urban tactics, entire combat teams in combined arms operations or even non-military usage such as emergency response procedures in lethal and non-lethal environments or terrain visualization.

The Mind Research Network (MRN) announced October 26, 2011 a partnership with the United States Air Force Research Laboratory (AFRL) to find ways to improve performance in situations where soldiers are faced with life or death decision making. The Air Force has an interest in using neuro-image guided non-invasive brain stimulation to enhance skills including decision making, learning and memory, visual search, and multi- tasking.

Transcranial direct current stimulation (tDCS) is a form of neurostimulation which uses constant, low current delivered directly to the brain area of interest via small electrodes. Currently, tDCS is used as therapy for certain psychological disorders such as anxiety disorders and depression, as well as a tool for motor rehabilitation in stroke patients.

Neurosystems for National Security

Military and intelligence communities are involved in high impact, complex and rapidly changing situations that often require life and death decisions. These decisions and their consequences can alter the rest of their lives. Neurosystems for National Security (NS2) explores how neuroscience tools can help these professionals deal with combat stress and perform with optimal decision making.

The goal of NS2 is to translate high spatial and temporal resolution brain imaging, fMRI, MEG, and noninvasive brain stimulation into viable solutions for training soldiers and intelligence professionals to help them with real-time decision making and actions that avert injury and trauma. Noninvasive brain stimulation, specifically transcranial direct current stimulation (TDCS), is being used to attempt to influence the learning process, perhaps increasing the speed of learning or improving retention. TDCS utilizes scalp electrodes to deliver low amplitude direct currents to localized areas of the cerebral cortex (the superficial part of the brain), thereby modulating the level of excitability, or, put another way, increasing or decreasing the probability that neurons will talk to each other. “Even though TDCS has been applied to humans safely for decades, we are just beginning to learn how it helps to accelerate the learning process. Within the next couple of years, I expect great progress toward this goal,” says researcher Dr. Michael Weisend.

Follow Paul Garrett Hugel:

Technology Test Pilot

In 1995 At Maui High Performance Computing Center The Maui Scientific Analysis & Visualization of the Environment Program was first incubated. I was the principal investigator of this independant research project which was a joint development between MHPCC, Silicon Graphics Computers (SGI) & NKO.ORG. Using SGI Cosmo Worlds software, we pioneered the development of Internet based 3D virtual reality GIS based interactive worlds. In 1996 with a network of seven high performance SGI workstations we pioneered development of live streaming MPEG-1, MPEG-2, MPEG-4, Real Video and QuickTime Streaming Server utilizing Kassenna MediaBase software. In Maui 2002 we pioneered and tested the first wireless live streaming video using laptop computers and Maui Sky Fiber's portable 3G wireless device. In Maui we pioneered live streaming video using usb modems from AT&T , Verizon as well as live streaming from iPhone 3 over 3G wireless networks. Today The Maui S.A.V.E. Program has diversified into storm tracking including visualization and analysis of large, memory-intensive gridded data sets such as the National Hurricane Center's wind speed probabilities. I volunteer my services to numerous Disaster Services Organizations. In June 2013 I returned from Hurricane Sandy deployment as a computer operations service associate with the Disaster Services Technology Group assisting as The American Red Cross migrated from a Disaster Response Operation to Long Term Recovery Operations. Pioneering the production/editing and Internet distribution of HD video to sites like Youtube.com and Vimeo.com we are shining the light towards environmental and peace efforts of humans across the globe. Since 1992 I have held the vision of establishing Maui, Hawaii as the environmental sciences center of the world. After His Holiness the 14th Dalai Lama of Tibet came to Maui This vision has expanded to establishing Maui as the environmental & peace center of the world.

Leave a Reply

You can encrypt your comment so that only Paul Garrett Hugel can read it.

This site uses Akismet to reduce spam. Learn how your comment data is processed.